Groups of Square-Free Order, An Algorithm

By J. Alonso

Abstract

An abstract definition of the groups of square-free order is given that leads naturally to a programmable computation of their number. O. Hölder's alternative description of the groups of square-free order is incidentally derived.

Throughout this paper G will be a group of order $h=\prod_{i=1}^{n} p_{i}$, where $p_{1}>p_{2}>$ $\cdots>p_{n}$ are given prime numbers. O. Hölder proved in 1895 that the number of groups of order h is

$$
\begin{equation*}
\sum_{S}\left(\prod_{j=1}^{r} \frac{\left(p_{S(j)}\right)^{c} S(j)-1}{p_{S(j)}-1}\right) \tag{1}
\end{equation*}
$$

where the sum extends to all the subsets $S=\{S(1), S(2), \ldots, S(r)\}$ of the set $\{2,3$, $\ldots, n\}$; and $c_{S(j)}$ is the number of differences $p_{i}-1, i \notin S$, which are divisible by p_{j}. The number of terms in (1) is very large even for small values of n; and therefore, it seems desirable to have a computer program that for each set of primes $\left\{p_{1}, p_{2}\right.$, $\left.\ldots, p_{n}\right\}$ skips the zero terms in (1).

The present paper makes no use of formula (1); it is an alternative approach to the description of the groups of order h and the determination of their number.

1. If $n=2$, by the Sylow theorems G has a normal subgroup $\langle a\rangle$ of order $q=p_{1}$ and a subgroup $\langle b\rangle$ of order $p=p_{2}$; therefore, $b a b^{-1}=a^{k}$; and since $a=b^{p} a b^{-p}=$ $a^{k^{p}}, k$ is a solution of the congruence equation

$$
\begin{equation*}
x^{p}=1 \quad(\bmod q) \tag{2}
\end{equation*}
$$

If $p \mid(q-1)$, (2) has exactly p distinct solutions $\bmod q$, say $1, K, K^{2}, \ldots$, K^{p-1} forming a cyclic group under multiplication $\bmod q$; and G is one of the two metacyclic groups [4, p. 462]

$$
\begin{align*}
& \left(a, b ; a^{q}, b^{p}, b a b^{-1}=a\right), \tag{3}\\
& \left(a, b ; a^{q}, b^{p}, b a b^{-1}=a^{K}\right) .
\end{align*}
$$

(3) is a cyclic group generated by $a b$. Observe that the metacyclic group ($a, b ; a^{q}, b^{p}$, $b a b^{-1}=a^{K^{r}}$) with $1<r<p$ has also presentation (4) if we use the generators a, b^{r} instead of a, b. If $p \nmid(q-1)$, then we only have the cyclic group (3).
2. In the general case, $n \geqslant 2$, we will use the following theorems whose proofs can be found in [3, 2.6.7, p. 39, 6.2.11, p. 138, 9.3.11, p. 229 and 9.3.10, p. 228].

Theorem 1. If H and A / H are solvable groups, so is A.
Theorem 2. If A is a finite group, p the smallest prime dividing o(A), and a Sylow p-subgroup P of A is cyclic, then P has a normal complement in A.

Definition. A Sylow basis B of a finite group A is a set of Sylow subgroups P_{i} of A, one for each prime divisor of $o(A)$, such that if $P_{1}, P_{2}, \ldots, P_{r}$ are elements of B then $P_{1} P_{2} \cdots P_{r}$ is a subgroup of A of order $\Pi_{i=1}^{r} o\left(P_{i}\right)$.

Theorem 3. If A is a finite solvable group, then A has a Sylow basis.
Theorem 4 (Hall). If A is a finite solvable group of order $u v$, and $(u, v)=1$, then: (i) A has at least one subgroup of order u, (ii) all the subgroups of A of order u are conjugate.

By Theorems 1 and 2 and induction on n, one can easily see that G is solvable; and therefore by Theorem 3, there exist $a_{i} \in G, i=1,2, \ldots, n$, such that $o\left(\left\langle a_{i}\right\rangle\right)=$ p_{i}; and $\left\langle a_{S(1)}, a_{S(2)}, \ldots, a_{S(r)}\right\rangle$ is a subgroup of G of order $\Pi_{i=1}^{r} p_{S(i)}$ for every subset $S \subseteq\{1,2, \ldots, n\}$. In particular, for $i<j$, we have, as in Section 1, $a_{j} a_{i} a_{j}^{-1}=$ $a_{i}^{k(i, j)}$, so that G has a presentation of the form

$$
\begin{equation*}
\left(\left\{a_{i} \mid 1 \leqslant i \leqslant n\right\} ;\left\{a_{i}^{p_{i}} \mid 1 \leqslant i \leqslant n\right\},\left\{a_{j} a_{i} a_{j}^{-1}=a_{i}^{k(i, j)} \mid 1 \leqslant i<j \leqslant n\right\}\right) \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
(k(i, j))^{p_{j}}=1 \quad\left(\bmod p_{i}\right) \tag{6}
\end{equation*}
$$

For each pair $i<j$ such that $p_{j} \mid\left(p_{i}-1\right)$, we will choose one $\neq 1$ solution $K(i, j)$ of the congruence equation (6); and therefore, $k(i, j)$ is a power of $K(i, j)\left(\bmod p_{i}\right)$.

If $i<j<t$, then $\left\langle a_{i}, a_{j}\right\rangle$ is normal in $\left\langle a_{i}, a_{j}, a_{t}\right\rangle$; and the relation $a_{j} a_{i} a_{j}^{-1}=$ $a_{i}^{k(i, j)}$ is changed by conjugation by a_{t} into $a_{j}^{k(j, t)} a_{i}^{k(i, t)} a_{j}^{-k(j, t)}=a_{i}^{k(i, j) k(i, t)}$, whence $a_{i}^{k(i, j)}{ }^{k(j, t)} k(i, t)=a_{i}^{k(i, j) k(i, t)}$; that is: $k(i, j)^{k(i, t)-1}=1\left(\bmod p_{i}\right)$ which implies that:

$$
\begin{equation*}
\text { If } i<j<t \text {, then either } k(i, j)=1 \text { or } k(j, t)=1 . \tag{7}
\end{equation*}
$$

Using a convenient power of $a_{j}, j>1$, as generator instead of a_{j}, we may assume as in Section 1 that

$$
\begin{equation*}
k(1, j) \text { equals either } 1 \text { or } K(i, j) \tag{8}
\end{equation*}
$$

More generally, we may assume without loss of generality that:
(9) If $1=k(1, j)=k(2, j)=\cdots=k(i-1, j)$, then $k(i, j)$ is either 1 or $K(i, j)$.

Proposition 1. There exists a group G with any given presentation of type (5) with exponents satisfying conditions (6)-(9).

Proof. For each $j,\left\langle a_{1}, a_{2}, \ldots, a_{j}, a_{j+1}\right\rangle$ is the relative holomorph

$$
\operatorname{Hol}\left(\left\langle a_{1}, a_{2}, \ldots, a_{j}\right\rangle,\langle f\rangle\right)
$$

with $f\left(a_{i}\right)=a_{i}^{k(i, j+1)}, 1 \leqslant i \leqslant j[3,9.2 .2, \mathrm{p} .214]$.
Proposition 2. Two presentations of type (5) with exponents satisfying conditions (6)-(9) that differ in one of the exponents $k(i, j)$ present morphically different groups. We postpone the proof of this proposition.
3. In the case of three factors we will call $r=p_{1}, q=p_{2}$ and $p=p_{3}$. By the previous section, G has one of the following presentations:
(10) $\quad\left(a, b, c ; a^{r}, b^{q}, c^{p}, b a b^{-1}=a, c a c^{-1}=a, c b c^{-1}=b\right)$,

$$
\begin{equation*}
\left(a, b, c ; a^{r}, b^{q}, c^{p}, b a b^{-1}=a, c a c^{-1}=a, c b c^{-1}=b^{K(2,3)}\right), \tag{11}
\end{equation*}
$$

$$
\left(a, b, c ; a^{r}, b^{q}, c^{p}, b a b^{-1}=a, c a c^{-1}=a^{K(1,3)}, c b c^{-1}=b\right)
$$

$$
\left(a, b, c ; a^{r}, b^{q}, c^{p}, b a b^{-1}=a, c a c^{-1}=a^{K(1,3)}, c b c^{-1}=b^{k(2,3)}\right) \quad \text { with }
$$

$$
k(2,3)=K(2,3)^{r}, \quad r=1,2, \ldots, p-1,
$$

$$
\begin{align*}
& \left(a, b, c ; a^{r}, b^{q}, c^{p}, b a b^{-1}=a^{K(1,2)}, c a c^{-1}=a, c b c^{-1}=b\right), \tag{14}\\
& \left(a, b, c ; a^{r}, b^{q}, c^{p}, b a b^{-1}=a^{K(1,2)}, c a c^{-1}=a^{K(1,3)}, c b c^{-1}=b\right) . \tag{15}
\end{align*}
$$

In order to show that they present morphically different groups observe:
(i) The groups with presentations (10)-(15) have the following characteristics:

	Abelian	$\langle a\rangle$ central	$\langle b, c\rangle$ Abelian	$\langle b\rangle$ central	$\langle c\rangle$ central
(10)	Yes				
(11)	No	Yes			
(12)	No	No	Yes	Yes	
(13)	No	No	No		
(14)	No	No	Yes	No	Yes
(15)	No	No	Yes	No	No

(ii) If G has two presentations of type (13), say, one with $k(2,3)=K(2,3)^{s}$ and the other with $k(2,3)=K(2,3)^{t}$, then G has elements a, b, c satisfying the relations of the first presentation, and elements $a^{\prime}, b^{\prime}, c^{\prime}$ satisfying the relations of the second presentation; since $\langle a\rangle$ and $\langle b\rangle$ are normal in G, we have (Theorem 4) $a^{\prime}=a^{x}$, $b^{\prime}=b^{y}$ and $c^{\prime}=a^{u} b^{v} c^{w}$. The relation $c^{\prime} b^{\prime} c^{\prime-1}=a^{\prime K(1,3)}$ implies $a^{x K(1,3)^{w}}=$ $a^{x K(1,3)}$, whence $w=1$; and the relation $c^{\prime} b^{\prime} c^{\prime-1}=b^{\prime K(2,3)^{t}}$ implies $b^{y K(2,3)^{s}}=$ $b^{y K(2,3)^{t}}$, whence $t=s(\bmod p)$; and therefore, the two presentations coincide.

The preceding discussion permits us to determine the number of groups of order $r q p$ as shown in the following table:

Table 1
Number of Groups of Order rqp, $r>q>p$

$q \mid(r-1)$	$p \mid(r-1)$	$p \mid(q-1)$	Number of groups
No	No	No	1
No	No	Yes	2
No	Yes	No	2
No	Yes	Yes	$p+2$
Yes	No	No	2
Yes	No	Yes	3
Yes	Yes	No	4
Yes	Yes	Yes	$p+4$

4. Proof of Proposition 2. Assume inductively that the proposition is true for $n-1$, and let G and G^{\prime} be groups with presentations of the type (5) satisfying conditions (6)-(9) and with $k(i, j) \neq k^{\prime}(i, j)$ for some pair $i<j$. If $j<n$, then by assumption $\left\langle a_{1}, a_{2}, \ldots, a_{n-1}\right\rangle \neq\left\langle a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n-1}^{\prime}\right\rangle$ and by Theorem $4 G \neq G^{\prime}$; therefore, we may assume that $k(i, j)=k^{\prime}(i, j)$ for all $1 \leqslant i<j<n$. If $k(1, n) \neq k^{\prime}(1, n)$, then by (8) one of the two is 1 and the other is $K(1, n)$, whence $\left\langle a_{1}, a_{n}\right\rangle \neq\left\langle a_{1}^{\prime}, a_{n}^{\prime}\right\rangle$ and $G \neq G^{\prime}$; therefore, we may assume that $k(1, n)=k^{\prime}(1, n)$. Let j be the smallest subindex such that $k(j, n) \neq k^{\prime}(j, n)$; we may assume that $k^{\prime}(j, n) \neq 1$ and by (7) $k(i, j)=k^{\prime}(i, j)=1$ for all $i<j$. If $k(i, n)=k^{\prime}(i, n)=1$ for all $i<j$, then by (9) $k(j, n)=1$ and $k^{\prime}(j, n)$ $=K(j, n)$; and therefore, $\left\langle a_{1}, a_{j}, a_{n}\right\rangle$ is of type (10), whereas $\left\langle a_{1}^{\prime}, a_{j}^{\prime}, a_{n}^{\prime}\right\rangle$ is of type (11) and by Theorem $4 G \neq G^{\prime}$. Else, let i be the least subindex such that $k(i, n)=k^{\prime}(i, n)$ $\neq 1$; by (9) $k(i, n)=k^{\prime}(i, n)=K(i, n)$; and therefore, $\left\langle a_{i}^{\prime}, a_{j}^{\prime}, a_{n}^{\prime}\right\rangle$ is of type (13), whereas $\left\langle a_{i}, a_{j}, a_{n}\right\rangle$ is either of type (13) with different exponent or of type (12); again by Theorem $4 G \neq G^{\prime}$.
5. O. Hölder's Approach. It is easy to see that $\left\langle a_{j}\right\rangle$ is normal in G if and only if $k(i, j)=1$ for all $i<j$, and $H=\left\langle\left\{a_{j} \mid\left\langle a_{j}\right\rangle\right.\right.$ normal in $\left.\left.G\right\}\right\rangle$ is Abelian and therefore cyclic. Furthermore, condition (7) shows that $G^{1} \subseteq H$, and therefore, G / H is also cyclic, which implies [4, p. 462] that G is metacyclic with presentation of the form

$$
\begin{equation*}
\left(a, b ; a^{s}, b^{t}, b a b^{-1}=a^{k}\right), s t=h \tag{16}
\end{equation*}
$$

$\underline{k(1,2)}$	$k(1,3)$	$\underline{k}(2,3)$	$\underline{k(1,4)}$	$\underline{k}(2,4)$	$k(3,4)$
1	1	1	1	1	1
					K
				K	1
					k
			K	1	1
					k
				k	1
					k
		K	1	1	1
				K	1
			K	1	1
				k	1
	K	1	1	1	1
				K	1
			K	1	1
				k	1
		k	1	1	1
				K	1
			K	1	1
				k	1
K	1	1	1	1	1
					K
			K	1	1
					k
	K	1	1	1	1
			K	1	1
		DIA			

Definition. i is linked to j if there exist $S(1)=i, S(2), \ldots, S(r)=j$ such that $a_{S(t)}$ does not commute with $a_{S(t+1)}, t=1,2, \ldots, r-1$. The proof of the following proposition is trivial:

Proposition 3. For each $i,\left\langle a_{i},\left\{a_{j} \mid i\right.\right.$ is linked to $\left.\left.j\right\}\right\rangle$ is the minimal direct summand of G containing a_{i}.
6. The number of groups of order h can be determined by means of the tree diagram of the exponents in (5), as we illustrate here for the case of 4 factors. In Diagram 1 above we write K or k for $K(i, j)$ or $k(i, j)$ when it is not equal to 1 ; the branches with some K or k exist if and only if the corresponding p_{j} divides $p_{i}-1$; a small k indicates that the offshoot originating at fork (i, j) has multiplicity $p_{j}-1$.
7. In the case of 4 factors we call $s=p_{1}, r=p_{2}, q=p_{3}$ and $p=p_{4}$. The number of groups of order srqp is easily determined by determining first the groups of order $s r q$, and pursuing in the tree diagram the number of extensions of each to groups of order srqp. We obtain:

Table 2
Number of Groups of Order srqp, $s>r>q>p$

	$\begin{aligned} & p \nmid(s-1) \\ & p \nmid(r-1) \\ & p \nmid(q-1) \end{aligned}$	$\begin{aligned} & p \nmid(s-1) \\ & p \nmid(r-1) \\ & p \mid(q-1) \end{aligned}$	$\begin{aligned} & p \nmid(s-1) \\ & p \mid(r-1) \\ & p \nmid(q-1) \end{aligned}$	$\begin{aligned} & p \nmid(s-1) \\ & p \mid(r-1) \\ & p \mid(q-1) \end{aligned}$	$\begin{aligned} & p \mid(s-1) \\ & p \nmid(r-1) \\ & p \nmid(q-1) \end{aligned}$	$\begin{aligned} & p \mid(s-1) \\ & p \nmid(r-1) \\ & p \mid(q-1) \end{aligned}$	$\begin{aligned} & p \mid(s-1) \\ & p \mid(r-1) \\ & p \nmid(q-1) \end{aligned}$	$p \mid(s-1)$ $p \mid(r-1)$ $p \mid(q-1)$
$\begin{aligned} & r \nmid(s-1) \\ & q \nmid(s-1) \\ & q \nmid(r-1) \end{aligned}$	1	2	2	$p+2$	2	$p+2$	$p+2$	$p^{2}+p+2$
$\begin{aligned} & r Y(s-1) \\ & q Y(s-1) \\ & q \mid(r-1) \end{aligned}$	2	3	4	$p+4$	4	$p+4$	$2 p+4$	$(p+2)^{2}$
$\begin{aligned} & r \nmid(s-1) \\ & q \mid(s-1) \\ & q H(r-1) \end{aligned}$	2	3	4	$p+4$	4	$p+4$	$2 p+4$	$(p+2)^{2}$
$\begin{aligned} & r \nmid(s-1) \\ & q \mid(s-1) \\ & q \mid(r-1) \end{aligned}$	$q+2$	$q+3$	$2 q+4$	$2 q+p+4$	$2 q+4$	$2 q+p+4$	$(q+2)(p+2)$	$\begin{gathered} (q+2)(p+2) \\ +p^{2} \end{gathered}$
$\begin{aligned} & r \mid(s-1) \\ & q+(s-1) \\ & q \nmid(r-1) \end{aligned}$	2	4	3	$p+4$	4	$2 p+4$	$p+4$	$(p+2)^{2}$
$\begin{aligned} & r \mid(s-1) \\ & q \nmid(s-1) \\ & q \mid(r-1) \end{aligned}$	3	5	5	$p+6$	6	$2 p+6$	$2 p+6$	$p^{2}+3 p+6$
$\begin{aligned} & r \mid(s-1) \\ & q \mid(s-1) \\ & q \nmid(r-1) \end{aligned}$	4	6	6	$p+7$	8	$2 p+8$	$2 p+8$	$p^{2}+3 p+8$
$\begin{array}{l\|l} r \mid(s-1) \\ q & \mid(s-1) \\ q \mid(r-1) \end{array}$	$q+4$	$q+6$	$2 q+6$	$2 q+p+7$	$2 q+8$	$2(p+q+4)$	$\begin{gathered} (q+2)(p+2) \\ +4 \end{gathered}$	$\begin{aligned} & (q+2)(p+2) \\ & +p^{2}+p+4 \end{aligned}$

8. A computer program to determine the number of groups of order h can be written using the tree diagram of Section 6:
(a) Set to 0 the number, NUM, of groups of order h.
(b) As we proceed along one branch, each occurrence of k multiplies NU , the
number of groups originated by the branch, by $p_{j}-1 . k$ occurs at the fork (i, j) when the following conditions are satisfied simultaneously: (i) $p_{j} \mid\left(p_{i}-1\right)$, (ii) $k(m, i)=1$ for all $m<i$, and (iii) $k(m, j) \neq 1$ for some $m<i$.
(c) When the end of one branch is reached, NU is accumulated to NUM.
(d) The next branch is picked up at the last fork (i, j) where $p_{j} \mid\left(p_{i}-1\right)$ and the $k(i, j) \neq 1$ has not been used.

Note. The FORTRAN program implementing the algorithm appears in the microfiche section.

Department of Mathematics
Bennett College
Greensboro, North Carolina 27420

1. O. HÖLDER, "Die Gruppen der Ordnung $p^{3}, p q^{2}, p q r, p^{4}$," Math. Ann., v. 43, 1893, pp. 300-412.
2. O. HÖLDER, "Die gruppen mit quadratfreier Ordnungzahl", Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. KL, v. 1895, pp. 211-229.
3. W. R. SCOTT, Group Theory, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 29 \#4785.
4. S. MAC LANE \& G. BIRKHOFF, Algebra, Macmillan, New York, 1967. MR 35 \#5266.

AT FORX (I, J):

```
A FORTRAN PROGRAM FOR THE COMPUTATION OF TEE MUMBER OT GROUPS OT
A GIVEN SQUARE - FREE ORDER H.
DIMENSIOK NP \((10), K(10,10), \operatorname{MB}(10,10), K V(10,10)\)
MP ARE THE PRIME FACTORS OF H IM DECREASIMG ORDER.
1) NB IS THE MAX. NUMBER OF OFFSHOONS (NOT COUMTIMG MULTIPLICITY).
2) K IS THE ORDIMAL NUMBER OF THE OFTSHOOT.
3) KV IS THE CUNOLATIVE NOLTIPLICITY OF TEE BRABCH.
WRITE(3,5)
WRITE(3,5)
FORMAT('1',2X,'ORDER'S PEIME PACTORS',13X,'NUMBER OF GRONPS',/)
    gETTING THE INFORMATION AND INITIALIZING.
READ( 2,22)M,(NP(I),I=1,N)
READ( 2,22)M,(NP(I),I=1,N)
PORMAT(11I3)
IF(A) 30,1000,30
NOM%O
NM1.N-1
    20 50 J=2,N
    JM1m-1
    Do 50 Im 1,NM
    IP((NP(I)-1)-((NP(I )-1)/(NP(J))\bulletMP(J))35,38,35
    NB(I,J)=1
    OC TO 40
    NB(I,J)=2
K(I,J)=1
KY(I,J)=1
I!
J1m
FOILOIING ONE BRANCH THROUGH.
NG_KV(I1,J1)
DO 500 Jmsi,N
IT(J-J 1) >0,80,70
I2-1
00.50 90
I2-11
JM1m-1
DO 500 I=I2,JM1
KV(I,J)=NU
IF(K(I,J)-1)100,500,100
IF(I-1)120,200,120
IMI=I-1
    D0 180 L-1,IM1
    IF(K(L,J)-1'150,180,150
    NU=NU* (NP(J)-1)
    GO TO 200
CONTINUE
JP|PP+1
```

```
    D0 280 LmJP1,K
280 MB(J,L)=1
500 CONTINUE
NUK=NOM+NT
c
C
C
C
    DO 700 JAEI,NM!
    imN+i-JA
    JM1m-1
    DC 700 IA=1,JK1
    IoJ-IA
    IF(X(I;J)-MB(I,J))600,700,600
600 K(I,J)_K(I,J)+1
    IliI
    Jlos
C
~
C
    IF(J-I-1)640,610,640
510 IF(J-N)520,55,55
620 JBoN+'
    GO TO 550
640 JB-J
650 DO 6?0 MmJB,N
    MM1.N-1
    IF(M-J )652,654,652
6 5 2 ~ 1 3 - 1 ~
    60 T0 656
554 I 1. I +1
656 DO 670 LeI3,MM I
    K(L,M)=1
    KV(L,M)=1
    IP(L-1)658,670,658
    IP((NP(L)-1)-((NP(L)-1)/NP(N))*NP(M))670,659,670
653 IP((NP(,
    DO 665 I.1-1,INM
    IF(K(L;,L)-:)660,665,660
650 NB(L,M)=1
    GO TO 570
655 NB(L,M)=2
670 CONTINUE
    GO TO 55
700 comTINUS
c
c OUTPET
WRITE(3,720)(NP(I),I=1,N)
    WRITE(3,720)(NP
    WRITE(3,920) NUM
3?0 FORMAT(1+1,40X,I'?)
    GC TO 2O
1000 STOF
    END
```

